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A Simple Analytic Design Procedure for Lattice Wave Digital Filters 

with Approximate Linear Phase 
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Abstract: 

A simple analytic design procedure for Lattice Wave Digital Filters (LWDFs) 

is presented with approximate linear phase. The design is started by replacing one of the 

two all-pass filter branches in LWDF with a pure delay and terminated by some analytic 

design formulas. Using Matlab 7.4, several design examples of the odd order type  utilizing 

such procedure are given for verifications. 
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1. Introduction    

        A Wave Digital Filter (WDF) is the 

digital image of a corresponding analogue 

filter in the analogue reference domain. 

That is why the design of WDFs can 

basically be carried out in the analogue 

domain using classical filter 

approximations followed by the 

application of certain analogue to digital 

transformations rules [1]. Among all other 

types of recursive filters, WDFs have the 

advantage of maintaining excellent 

stability properties for wide-range 

coefficient variations that take place 

under finite arithmetic conditions. That 

because  their structures are guaranteed to 

be free from parasitic oscillations,      

have a close to minimum coefficient    

sensitivity, high dynamic range, and   

good  computational  properties  [2 - 5]. 

Unfortunately, suboptimal design method 

of these WDFs results in very high 

complexity implementations. Particularly, 

favorable wave digital filters are the 

Lattice Wave Digital Filters (LWDFs). 

Using LWDFs, highly modular, perfectly 

regular and parallel filter structures can be 

obtained [6]. They are suitable for VLSI 

implementations as they have regular low 

complexity structures, low coefficients 

sensitivity, and can yield optimal 

pipelining for bit-serial implementations 

of   maximally  fast  speeds [7 - 9]. Some 

efficient pipelined WDFs  are widely used 

in wideband high-pass applications     

such as wireless codec design or 

electrocardiogram (ECG) signal processing 

[10], while the others guarantees that the 

optimum finite-word-length solution can 

be found for both the fixed-point and the 

multiplierless coefficient representations 

[11].  Wave digital realizations can also 

be obtained from the specifications, 

through Very High Speed Integrated 

Circuits (VHSICs) Hardware Description 

Language (VHDL) and then synthesized 

into Xilinx Field Programmable Gate 

Arrays (FPGA) implementations [12]. In 

addition to that, LWDF is well suited for 

microcontrollers without a hardware 

multiplier [13].  

 

        Some electronic applications are: 1) 

high-speed integrated circuits based on 

the LWDF structures are obtained, 2) 

multirate IF filters for mobile radio using 

LWDFs are implemented in silicon, and 

3) simple glass breakage detectors are 

designed using the MSP430 [2, 5, 14]. 

Other application areas are pulse  

shaping, audio / image   processing  

systems, digital camera, and  mobile  

phone [4, 15]. Recently,wavelet transform 

implementations and wavelet bases are 

obtained from orthonormal nonseparable 

perfect reconstruction quadrature mirror 

filter (QMF) banks that are realized either 

with WDFs or LWDFs [16].  

   

         The first design of LWDFs was 

reported initially by Gazsi in 1985 [17]. 

Gazsi used some explicit formulas for the 

direct computation of the adaptor 

coefficients starting from the poles of the 

transfer function of the analogue filter 

predesigned by classical filter 

approximation techniques. Such design 

uses the alternative pole technique. 

LWDFs are inherently branching filters 
and their realizations are composed  of 

two parallel allpass filter sections [18].  

However, such LWDFs can only  satisfy 

some magnitude response requirements 

without taking any phase response 

requirement into considerations [12, 19]. 

Most attempts to design such LWDFs 

satisfying both magnitude and phase 

requirements face the problem of no 

closed form solutions existence. For those 

attempts, numerical optimization 

techniques must be adopted [1, 20]. The 

idea of LWDFs is then extended to the 

design of almost linear phase LWDFs by 

replacing one of the two parallel allpass 

sections by a pure delay [21 , 22]. In all 

design methods for such LWDFs with 

approximate  phase linearity, there still no  
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existence of any simple analytic design 

approach

         In this paper, a simple analytic 

design procedure for  LWDFs with 

approximate linear phase is presented. 

The procedure is based on the prescribed 

idea of letting one of the two parallel all-

pass filter sections be a pure delay to 

result in an odd order  almost linear phase 

LWDF. Section 2 of this paper presents 

the basic ideas of LWDFs. LWDFs with 

almost linear phase are described in 

section 3. The design procedure is 

presented in section 4. Section 5 contains 

several design examples. Finally, section 

6 concludes this paper.     
 

2. Lattice Wave Digital Filters              

         A LWDF is a two-branch structure, 

as shown in Fig. 1, where each branch 

realizes an all-pass filter [17, 18]. These 

all-pass filters can be realized in several 

ways. One approach that yields parallel 

and modular filter algorithms is to use 

cascaded first- and second-order sections. 

The first- and second-order sections can 

be realized as shown in Fig. 2, using 

symmetric two-port adaptors [1, 21]. 

Two-port series or parallel adaptors  using 

certain equivalence transformations can 

easily replace these sections.  The second-

order sections can also be realized using 

three-port series or parallel adaptors [21]. 

Another approach is to realize the all-pass 

filters using Richard’s structure [1], 
where a processing element can easily be 

formed to accomplish a bit-serial low-

power implementation with low-

complexity.
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      The transfer function of a LWDF can 

be written as 
 

 H(z) =  [ H0(z) + H1(z) ]                     (1) 

where H0(z) and H1(z) are all-pass filters. 

The overall frequency response can 

therefore, be written as 

  

 H(e
jωT

) =  [ e
 jФ0 (ωT)

 + e
 jФ1(ωT)

 ]       (2) 

            

where Ф0(ωT) and Ф1(ωT) are the phase 

responses of H0(z) and H1(z), 

respectively. The magnitude of the overall 

filter is thus limited by 

 

   ≤ 1                                 (3)                                                       

 
       The transfer function of a LWDF and 

its complementary transfer function are 

power complementary, i.e., 

 

 =1              (4)          

 

where 

 

Hc(z) =  [ H0(z) – H1(z) ]                     (5)                  

  
This means that, if H(z), for example, is a 

low-pass filter, then a high-pass filter  

Hc(z) can be obtained  by  simply  

changing  the  sign   of   the   all-pass   

filter H1(z) in (1). It is known that, an 

attenuation zero exists corresponding to 

an angle ω0T at which the magnitude 

function reaches its maximum value. For 

LWDFs, this occurs when [21] 

 

  =1                                       (6)                        

 

       A transmission zero  exists  

corresponding to  an  angle  ω1T  at  

which  the   magnitude  function   is  zero,  

 

 

i.e. when 

 

 = 0                                       (7)                                  

  

        At an attenuation zero, the  phase 

responses of the branches must take the 

same value. Hence, in the pass-band of 

the filter, the phase responses must be 

approximately equal , i.e. 

 

  Ф0(ωT) = Ф1(ωT)                                (8) 
                                                                
while, at a transmission zero, the 

difference in phase between the two 

branches must be 

 

 Ф0(ωT) – Ф1(ωT) = ±π                         (9) 
 
Thus, the difference  in  phase between 

the two branches must approximate  ±π  

in  the stop-band of the filter. To  make 

sure that only one pass-band and one 

stop-band occur, the orders of H0(z)  and 

H1(z)  must differ by one [18, 21]. 

 

3. Linear Phase LWDFs  

 

         It is possible to obtain a LWDF (and 

more generally, a filter composed of  two 

all-pass filters in  parallel )  with   

approximately   linear  phase  by  letting 

one of the branches consist of a pure M
th

 

orders delay [21 – 23]. A linear phase 

LWDF is shown in Fig. 3. The low-pass 

transfer function of a linear-phase LWDF 

is 

 H(z) =  [ H0(z) + z
-M

 ]                      (10)       

The transfer function H0(z) corresponds 

to a general allpass function and can 

consequently be written as 

 

                      (11)
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For low-pass and high-pass filters N and 

M must be selected such that  N= M ±  1. 

The  selection N = M + 1 gives the best 

result in most cases. Using such selection, 

the overall frequency response will be of 

the odd order type and can be expressed 

as 

H(e
jωT

) =  [ e
 jФ0 (ωT) 

+ e
-MωT

 ]         (12)  

          In   the  pass-band,  the   phase   

response   of   H0(e
jωT

)  branch, Ф0 (ωT), 

must approximate the phase response of 

the other branch which in this case is 

linear, i. e., Ф0(ωT) = – MωT. This forces 

the overall phase response to be 

approximately linear in the passband. 

 

        There exist no closed form solutions 

for the design  of  linear phase LWDFs,  

therefore, numerical optimization 

algorithms have be used. Many of these 

optimization approaches are reported for 

the design of almost linear phase LWDFs 

[21 -23]. In the next sections, a simple 

analytic procedure for the design of 

almost linear phase LWDFs is introduced 

with some illustrative examples. 
 

4. The Design Procedure          

         The design of low-pass linear phase 

LWDF is considered here  with  cutoff  

frequency   ωcT ( or ωc for normalized 

case, i.e., T = 1). The design procedure      

starts     from    (12)     by approximately 

equating the phases of the two (all-pass 

and pure delay) branches of Fig. 3 in the 

pass-band as 

 

Ф0(ωT) = - MωT ± ∆   ,    
                  for  ( 0 ≤ ωT ≤ ωcT)         (13) 

 

and with approximately - π difference in 

the stop-band as 

 

Ф0(ωT) = - MωT - π ± ∆  ,     

                  for   (ωcT ≤ ωT ≤ π)         (14) 
 

where ∆ is a small  real  value  

approaches zero at both attenuation and 

transmission zeros. The all-pass branch 

takes the following transfer function:  

 

          (15)        

  

where N=M+1 is the order of the all-pass 

section and  bn's  are the coefficients to be 

determined. 

         From (15), one can write 

      

                                                             (16) 
or 

     

        
 

                                                             (17) 
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Thus, the phase response of the allpass 

branch is  

 Ф0(ωT)= tan
-1  

   

 tan
-1                        

                                                           (18) 

        From all-pass characteristic, it is 

known that 

tan
-1

 

    -tan
-1 

  

Thus, 

Ф0(ωT) = 2tan
-1

  

                                                           (19)                                        

or 

  =  

 tan    

i.e.,  

   – tan   

                             cos nωT ] = 0        (20) 

 

          According  to (13) and  (14),  (20)  

can  be  formulated  in  the pass-band as 

follows: 

 – tan   

cos nωT]= ± ,  for ( 0 ≤ ωT ≤ ωcT)   (21) 

 

and in the stop-band as follows: 

– tan   

cos nωT] = ± ,  for (ωcT ≤ ωT ≤ π)   (22) 
 

where   1.  

  

        By selecting (N+1) extremal points 

on the union of the pass-band and the 

stop-band regions. Therefore, (21) and 

(22) are sampled in these frequency 

points, while proper alternating ±δ 

values are examined at these points. One   

can     start    with     an     initial      point  

ω1T > 0 and the other points in the pass-

band and stop-band can then be 

distributed equidistantly in the rest band. 

In matrix form, we can write the 

sampled version of (21) and (22) as 

 

A B = δ                                 (23) 

                                                               

where A is an (N+1) x (N+1) Matrix 

given by  

 

A = [ a i j],  for (i , j) = 1, 2, 3,.  . .(N+1)  

                                             (24)  

B is an (N+1) x 1 matrix can be written 

in a transposed form as 

 

B
t
 = [ b0    b1   b2    .  .  .   bN  ]            (25) 

  

and  δ an (N+1) x 1 matrix can be 

written in a transposed form as 
 

δ
t
 = [ δ    -δ     δ    -δ  . . .     δ  ]        (26) 

with 

ai j =  – tan     

                   cos              (27) 
 

in the passband (0 < ωiT ≤ ωcT), i =1, 2, 

3,…., N/2 (N even) [or i =1, 2, 3, 

….,(N+1)/2 (N odd)] and j =1, 2, 3,….., 

N+1. Also 

aij = – 

tan cos    (28) 

 

in  the  stop-band  (ωcT < ωiT ≤ π), i = 

(N/2) + 1, (N/2) + 2, .…., N+1 (N even) 

[ or i = [(N+1)/2] +1,   [(N+1)/2] + 2, 

…..., N+1 (N odd) ]  and   j = 1, 2, 3….., 

N+1.  

 

         In this analytic algorithm,  can be 

selected properly to solve (23) as   
 

B = A
-1

  δ                                          (29)                                         

                                                                                                                                                               

The design  algorithm  is  thus    reduced  

to    the     calculation    of    the    vector 
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B
t
 = [b0   b1  b2  … bN]  which represents 

all the bn's coefficients that should appear 

in H0 (z
-1

) of (15), while the total low-

pass LWDF function HLPF (z
-1

) is the one 

given in (10). Polynomial factorization 

can be used to expand H0 (z
-1

) of (15) 

into a product of 1
st
 and 2

nd
 order all-pass 

sections, while all the multiplier 

coefficients αi of the corresponding 1
st
 

and 2
nd

 order adaptors in branch H0(z
-1

) 

can then be evaluated by using the same 

method given in [24]. It should be noted, 

here, that to design the corresponding 

high-pass complement filter, one can 

change the plus sign to minus in (10)      

to  find  the  total  high-pass  function    

HHPF (z
-1

). It should also be noted that 

low-pass  LWDF can be transformed to 

band-pass one HBPF (z
-1

) by setting each z 

in HLPF (z
-1

) equal to –z
2
 . 

 

5. Design Examples   

        Five different examples are 

illustrated in this section to support the 

above design procedure of approximately 

linear phase of LWDFs, using the 

algorithm described in section 4. These 

examples are a 5
th

 order LPF with cutoff 

frequency (0.34 ), another  5
th

  order  

HPF  with  cutoff frequency  (0.34 ), a 

7
th

 order LPF with cutoff frequency    

(0.5 ), a 9
th

 order LPF with cutoff 

frequency (0.58 ), and 13
th

 order LPF 

with cutoff frequency (0.42 ). Applying  

the design procedure with δ = 0.01, the 

upper all-pass branches in the LWDF of 

Fig. 3 will be of a 3
rd

 order type ( N = 3 i. 

e., M = 2) for the 5
th

 order  LPF, another  

3
rd

  order  type ( N = 3 i. e., M = 2) for 

the 5
th

 order HPF, a 4
th

 order type ( N = 4 

i. e., M = 3 ) for the 7
th

 order LPF, a 5
th

 

order type       ( N = 5 i. e., M = 4 ) for 

the 9
th

 order LPF, and a 7
th

 order type ( N 

= 7 i. e., M = 6 ) for the 13
th

 order LPF. 

The resulting Ho(z
-1

) and H1(z
-1

) with the 

total low pass or high pass responses, 

(HLPF(z
-1

) or HHPF(z
-1

)), those  correspond 

to  the  five examples are  given  in 

Table-1. The magnitude and phase 

responses are shown in Figs. 4 - 8. 
 

6. Conclusions 
 

        A simple design of an odd order 

almost linear phase LWDFs has been 

presented in this paper. Linear phase 

responses can approximately be achieved 

for these structures by replacing one of 

the all-pass branches of the original 

structures by a delay unit. Since there 

exist no closed form solutions for the 

design of linear phase LWDFs, therefore, 

numerical optimization algorithms have 

always been  used. A simple analytic 

design procedure of almost linear phase 

LWDFs has been presented in this paper 

with some examples. 
 

         It has been noticed that the 

magnitude and phase  responses of the 

designed filters give better 

representations of the desired ones         

as the order of the LWDF  increases        

(about 90% of the pass-band preserve the 

linear phase  property   for   filters   with 

orders 9 and 13). That means more 

implementation complexity is required. 

this complexity may be reduced since all 

numerator polynomials of the total 

responses in Table-1 are image mirror 

ones. In addition to that, half-band 

LWDFs, such as the example of 7
th

   

order LPF, preserves the property of 

having some zero parameters in            

the total response which will provide 

more reductions in implementation. 

Fortunately, Such implementation may 

easily find its place on a single chip  

using bit-serial, bit-parallel processing 

elements or FPGA structures. It is 

promising topics to use such orthonormal 

structures (with half-band filters) in the 

wavelet transform implementations  on a 

single FPGA chip or to use them as 

wavelet bases with perfect reconstruction 

Quadrature Mirror Filter (QMF) banks. 
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Table-1 The resulting Ho(z

-1
) and H1(z

-1
) with the total responses (HLPF(z

-1
) or HHPF(z

-1
)) 

according to LWDF type 

 

          

Type of 

approximately 

linear phase 

LWDF 

 

Ho(z
-1

) 

 
H1(z

-1) 

 

HLPF(z
-1

) or HHPF(z
-1

) 

5
th

 order LPF 

with cutoff 

frequency 

(0.34 ) 

0.2552+ 0.3350 z 
-1

- 0.4390z
 -2

 +  

z 
-3 

1 -0.4390 z 
-1

 + 0.3350 z
- -2 

+ 

0.2552 z 
-3 

  

 

z 
-2

 

0.1276 + 0.1675 z
 -1

+0.2805 z
 -2

 + 

0.2805 z
 -3

+ 0.1675 z 
-4 

+0.1276 z
 -5

1 - 0.4390 z 
-1

 + 0.3350 z
- -2

+  

0.2552 z 
-3 

5
th

 order HPF 

with cutoff 

frequency 

(0.34 ) 

0.2552+ 0.3350 z 
-1

- 0.4390z
 -2

 + 

 z 
-3 

1 - 0.4390 z 
-1

 + 0.3350 z
- -2 

+  

 0.2552 z 
-3 

 

 

z 
-2

 

0.1276 + 0.1675 z
 -1

 - 0.7195 z 
-2

+ 

0.7195 z 
-3

 -0.1675 z
 -4

 -0.1276 z 
-5

 

1- 0.4390 z
 -1

 + 0.3350 z
 -2

 +  

0.2552 z
 -3

 

7
th

 order LPF 

with cutoff 

frequency   

(0.5 ) 

 

- 0.4608 + 0.3377 z 
-2

 + z 
-4

 

1 + 0.3377 z 
-2

  - 0.4608 z 
-4

 

 

z
  -3

 

0.2304 +0.1689 z 
-2

 + 0.5 z 
-3

 + 0.5 

z 
-4

 + 0.1689 z 
-5

- 0.2304 z 
-7 

1 + 0.3377 z 
-2

  - 0.4608 z 
-4

 

 

9
th

 order LPF 

with cutoff 

frequency 

(0.58 ) 

0.0944  - 0.1751z 
-1

 +  

0.0006 z 
-2 

+  0.5488 z 
-3

 +  

0.3700z 
-4

 + z 
-5 

1 + 0.3700z
 -1

 + 0.5488 z 
-2

 + 

0.0006 z 
-3

 - 0.1751z
  -4

 + 

0.0944 z 
-5

    

 

 

 

z
  -4

 

0.0472 - 0.0875 z 
-1

 + 0.0003 z 
-2

+ 

0.2744 z 
-3

+ 0.6850 z 
-4

 + 

0.6850z 
-5

+0.2744 z
 -6

 +0.0003z
 -7

 - 

0.0875 z 
-8

 + 0.0472 z 
-9

 

1 + 0.3700z
 -1

 + 0.5488 z 
-2

 + 

0.0006 z 
-3

 - 0.1751z
  -4

 +  

0.0944 z 
-5

    

 

 

13
th

 order LPF 

with cutoff 

frequency 

(0.42 ) 

 

0.0519 - 0.0323 z
-1

 - 0.0328 z
-2 

-

0.0948 z
-3     

-0.0402z
-4

 +  

0.4218z
-5

 - 0.2319z
-6

 +z
-7

 

1 - 0.2319 z
-1

+ 0.4218 z
-2

-  

0.0402z
-3

 -0.0948 z
-4

-0.0328 z
-5

 - 

0.0323 z
-6

+ 0.0519 z
-7

 

 

 

 

 

    

z
-6

 

0.0260 -0.0162 z
-1 

-0.0164 z
-2

 - 

0.0474 z
-3

-0.0201z 
-4

+0.2109 z
-5

 + 

0.3840 z
-6

 + 0.3840 z
-7

 +  

0.2109 z
-8

- 0.0201z
-9

 -0.0474 z
-10

 - 

0.0164 z
-11

 - 0.0162 z
-12

 +  

0.0260 z
-13

 

1 - 0.2319 z
-1

+ 0.4218 z
-2

-  

0.0402z
-3

 -0.0948 z
-4

 -0.0328 z
-5

 - 

0.0323 z
-6

+ 0.0519 z
-7
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                                             (a)                                                                        (b) 

Fig. 4  Responses of the 5
th

 order LPF; (a) Magnitude,  (b) Phase. 
 

 

 

             
                                                         (a)                                                                          (b) 

Fig. 5  Responses of  the 5
th

 order HPF; (a) Magnitude,  (b) Phase.
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                                                       (a)                                                                           (b) 

Fig. 6  Responses of  the 7
th

 order LPF; (a) Magnitude,  (b) Phase.
 

 

 

 

 

                        
                                                        (a)                                                                           (b) 

Fig. 7  Responses of the 9
th

 order LPF; (a) Magnitude,  (b) Phase.
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                                                     (a)                                                                           (b) 

Fig. 8  Responses of the 13
th

 order LPF; (a) Magnitude,  (b) Phase. 
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